Divisibility Rules

These rules make it easier to find factors of numbers. The more you know, the easier it will be to find prime factors and reduce fractions.

Divisible by:	If:	Examples:
2	The last digit is even (0,2,4,6,8)	12 8 is 12 9 is not
3	The sum of the digits is divisible by 3	$381 (3+8+1=12, \text{ and } 12\div3 = 4)$ Yes 217 (2+1+7-10, and $10\div3 = 3\frac{1}{2}$)No
4	The last 2 digits are divisible by 4	$1312 \text{ is } (12\div4=3)$ 7019 is not
5	The last digit is 0 or 5	17 5 is 80 9 is not
6	The number is divisible by both 2 and 3	114 (it is even, and 1+1+4=6 and $6\div 3 = 2$) Yes 308 (it is even, but 3+0+8=11 and $11\div 3 = 3^{2/3}$) No
7	If you double the last digit and subtract it from the rest of the number and the answer is: • 0, or • divisible by 7 (Note: you can apply this rule to that answer again if you want)	672 (Double 2 is 4, 67-4=63, and 63÷7=9) Yes 905 (Double 5 is 10, 90-10=80, and 80÷7=11 ³ / ₇) No
8	The last three digits are divisible by 8	109 816 (816÷8=102) Yes 216 302 (302÷8=37 ³ / ₄) No
9	The sum of the digits is divisible by 9 (Note: you can apply this rule to that answer again if you want)	1629 (1+6+2+9=18, and again, 1+8=9) Yes 2013 (2+0+1+3=6) No
10	The number ends in 0	22 0 is 22 1 is not
11	Add and subtract digits in an alternating pattern (add first, subtract second, add third, etc). Then the answer must be: • 0, or • divisible by 11	1364 $(1-3+6-4=0)$ Yes 913 $(9-1+3=11)$ Yes 3729 $(3-7+2-9=-11)$ Yes 987 $(9-8+7=8)$ No
12	The number is divisible by both 3 <i>and</i> 4	648 (<i>By 3</i> ? 6+4+8=18 and 18÷3=6 Yes. <i>By 4</i> ? 48÷4=12 Yes) Yes 524 (<i>By 3</i> ? 5+2+4=11, 11÷3= 3 ² / ₃ No. Don't need to check by 4.) No