Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
{ }	Set	A collection of elements	A = {2,7,8,9,15,23,35}
$\mathbf{A} \cap \mathbf{B}$	Intersection	Objects that belong to set A and set B	If set A = {1,2,3} & set B = {2,3,4} then A \cap B = {2,3}
$A\cup B$	Union	Objects that belong to set A or set B	If set A = {1,2,3} & set B = {4,5,6} then $A \cup B = \{1,2,3,4,5,6\}$
$\mathbf{A} \subseteq \mathbf{B}$	Subset	Set A is a subset of set B if and only if every element of set A is in set B.	If set A = $\{a,b,c\}$ & set B = $\{a,b,c\}$ then A \subseteq B.
$A \subset B$	Proper Subset	Set A is a proper subset of set B if and only if every element in set A is also in set B, and there exists at least one element in set B that is not in set A.	If set A = {a,b} & set B = {a,b,c,d} then $A \subset B$.
$A \not\subset B$	Not Subset	Subset A does not have any matching elements of set B.	If set A = {a,b} & set B = {c,d,e,f} then $A \not\subset B$.
A⊇B	Superset	Set A is a superset of set B if set A contains all of the elements of set B.	If set A = {d,e,f} & set B = {d,e,f} then $A \supseteq B$.
$A \supset B$	Proper Superset	Set A is a proper superset of set B if set A contains all of the elements of set B, and there exists at least one element in set A that is not in set B.	If set A = $\{4,5,6\}$ & set B = $\{5,6\}$ then A \supset B.
$A \not\supset B$	Not Superset	Set A is not a superset of set B if set A does not contains all of the elements of set B.	If set A = {a,f,c,d} & set B = {b,f} then $A \not\supset B$.
$\boldsymbol{\mathcal{P}}(\mathbf{A})$	Power Set	Power set is the set of all subsets of A, including the empty set and set A itself.	If set A = {1,2,3} then $\mathcal{P}(A)$ = { }, {1}, {2}, {3}, {1,2}, {1,3}, {1,2,3}
A = B	Equality	Set A & set B contain the same elements.	If set A = $\{2,3,4\}$ & set B = $\{2,3,4\}$ then A = B.

Set Theory Symbols and Definitions

Symbol	Name	Definition	Example
A^{c} or A^{\prime}	Complement	All objects that do not belong to set A.	
A - B	Relative Complement	Elements of set A but not set B	If set A = $\{a,b,c\}$ & set B = $\{c,d,e\}$ then A - B = $\{a,b\}$
ΑΔΒ	Symmetric Difference	Elements that belong to set A or set B but not to their intersection.	If set A = {a,b,c} & set B = {c,d,e} then $A \triangle B = $ {a,b,d,e}
a∈A	Element of	Membership of set A.	If set A = {a,b,e,f,g,h} then $a \in A$
x∉A	Not an Element of	Not a member of set A.	If set A = {a,b,e,f,g,h} then $x \notin A$
Ø	Null or Empty Set	The set does not contain any elements.	if set A = { } then A = \emptyset
U	Universal Set	The set of all possible elements.	If set A = $\{1,2,3\}$, set B = $\{4,5,6\}$ & set C = $\{7,8\}$ then U = $\{1,2,3,4,5,6,7,8\}$
ℕ₀	Set of Natural Numbers with Zero	$\mathbb{N}_{0} = \{0, 1, 2, 3, 4, 5, 6, 7, 8,\}$	$0 \in \mathbb{N}_{0}$
\bowtie_1	Set of Natural Numbers without Zero	$\mathbb{N}_1 = \{1, 2, 3, 4, 5, 6, 7, 8, \ldots\}$	$7 \in \mathbb{N}_1$
Z	Set of Integer Numbers	ℤ = {4,-3,-2,-1,0,1,2,3,4,}	-2 ∈ ℤ
Q	Set of Rational Numbers	A rational number is a number that can be expressed as a fraction where p and q are integers and q does not equal zero.	$\frac{2}{3} \in \mathbb{Q}$
R	Set of Real Numbers	$\mathbb{R} = \{x \mid -\infty < x < \infty\}$	4.862 ∈ ℝ
C	Set of Complex Numbers	$\mathbb{C} = \{ z \mid z = a + bi, -\infty < a < \infty, -\infty < b < \infty \}$	5 + 3i ∈ ℂ

